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ABSTRACT 

Objective 

The National Institutes of Health’s All of Us Research Program addresses gaps in 

biomedical research by collecting health data from diverse populations. Pregnant 

individuals have historically been underrepresented in biomedical research, and 

pregnancy-related research is often limited by data availability, sample size, and 

inadequate representation of the diversity of pregnant people. All of Us integrates a wealth 

of health-related data, providing a unique opportunity to conduct comprehensive 

pregnancy-related research. We aimed to identify pregnancy episodes with high-quality 

electronic health record (EHR) data in All of Us Research Program data and evaluate the 

program’s utility for pregnancy-related research.  

Materials and Methods 

We used a previously published algorithm to identify pregnancy episodes in All of Us 

EHR data. We described these pregnancies, validated them with All of Us survey data, and 

compared them to national statistics.  

Results 

Our study identified 18,970 pregnancy episodes from 14,234 participants; other 

possible pregnancy episodes had low-quality or insufficient data. Validation against 

people who reported a current pregnancy on an All of Us survey found low false positive 

and negative rates. Demographics were similar in some respects to national data; 



however, Asian-Americans were underrepresented, and older, highly educated pregnant 

people were overrepresented. 

Discussion 

Our approach demonstrates the capacity of All of Us to support pregnancy research 

and reveals the diversity of the pregnancy cohort. However, we noted an 

underrepresentation among some demographics. Other limitations include measurement 

error in gestational age and limited data on non-live births. 

Conclusion 

The wide variety of data in the All of Us program, encompassing EHR, survey, genomic, 

and fitness tracker data, offers a valuable resource for studying pregnancy, yet care must 

be taken to avoid biases. 

  



INTRODUCTION 

Despite the critical role of pregnancy in human health and development, it remains an 

understudied area in biomedical research. Women’s health research, in general, has been 

historically neglected, leading to significant gaps in our understanding of conditions 

uniquely or predominantly affecting women.[1] This neglect extends to pregnancy, where 

the complexities and ethical considerations of studying the pregnant population have led 

to the widespread exclusion of pregnant people from clinical trials and efficacy studies. 

This not only leads to a gap in understanding of many health conditions, treatments, and 

events among pregnant people, but it also limits pregnancy-related research. 

Observational data is therefore necessary to study the impacts of various exposures, as 

well as to gain insights into the broader spectrum of pregnancy-related health conditions, 

behaviors, and outcomes. Nevertheless, research into pregnancy and the postpartum 

period remains challenging due to data and study design limitations.  

Historically, studies about pregnancy and postpartum health outcomes have relied on 

costly cohort studies or surveillance mechanisms that do not capture the entire pregnancy 

period. For example, state and national governments provide representative but cross-

sectional birth surveillance data that also fails to capture early outcomes or sufficient data 

on pregnancy exposures such as medications.[2,3] Birth certificates, while useful for 

documenting basic demographic information and birth outcomes, lack detailed and 

accurate information on maternal health, prenatal care, and pregnancy complications.[4] 

Additionally, birth registry data do not capture longitudinal data on maternal and child 

health beyond the immediate postpartum period.  



Birth cohorts, observational studies that recruit pregnant or recently postpartum 

people and their infants, often recruit participants in the later stages of pregnancy, missing 

the earliest pregnancy exposures and outcomes such as miscarriages.[5–7]  More recently, 

preconception cohort studies have been designed to prospectively collect data on fertility, 

pregnancy, and postpartum health outcomes.[8–11] While cohort studies are rich in 

longitudinal data, they are also inherently resource-intensive and often rely primarily on 

self-report of pregnancy timing and outcomes.  

Real-world data, including electronic health records (EHR) and insurance claims, 

contain thorough information about diagnoses, medications, and healthcare procedures 

and their costs. While the longitudinal nature of the data, coupled with very large sample 

sizes, is promising for studying key biomedical, social, and health services outcomes, 

these datasets usually lack important demographic information.[12] Additionally, 

identifying pregnancies and measuring gestational age in these complicated records is 

challenging. 

The All of Us Research Program provides an opportunity for pregnancy-related 

research that overcomes some of the limitations of other data sources. The program is 

funded by the US National Institutes of Health to improve precision health research and 

began collecting data on a planned 1 million Americans in 2018.[13] The study collects 

both EHR and survey data, as well as biospecimens and data from activity trackers, 

allowing for longitudinal studies examining both social and biomedical exposures and 

outcomes. The All of Us Research Program’s mission is to fully represent the diversity of 

the US population by explicitly including groups historically underrepresented in 



biomedical research.[13] Conducting pregnancy-related research using All of Us Research 

Program data aligns well with this aim, as pregnant people, and in particular pregnant 

people of color and sexual and gender minorities,[14–16] make up an important and 

understudied segment of this population.  

Maternal morbidity and mortality are of utmost concern in the US, with rising risks and 

severe disparities in outcomes by race and ethnicity.[17,18] The ability to link health 

outcome data from medical records to survey questions about health behaviors, medical 

history, and socioeconomic and interpersonal experiences can provide new insights into 

pregnancy and in the postpartum period. In particular, the survey data collected by All of 

Us provides in-depth information about social determinants of health that may help 

explain disparities in maternal health and, most importantly, identify interventions. Data 

sources beyond EHR and survey data include genetic, physical measurement, and fitness 

tracker data, which together have the potential to offer a comprehensive view of 

participants’ health before, during, and after pregnancy. 

While the All of Us Research Program provides an opportunity to ask new research 

questions about pregnancy, challenges to identifying and characterizing pregnancies in 

real-world data remain. Identifying pregnancy episodes in the All of Us EHR data can be 

difficult due to variations in coding practices, patients visiting multiple healthcare 

providers over the course of a pregnancy, and infrequent use of codes that identify 

gestational age. These challenges mean that researchers cannot rely on a single code to 

identify pregnancy, and complex algorithms are needed to identify pregnancies, ascertain 

their outcomes, and estimate gestational ages.[19]   



OBJECTIVE 

This work aimed to identify pregnancy episodes in the most recent release of All of Us 

data using an algorithm previously published by Jones et al.[19] Objectives included 

determining gestational age and pregnancy outcomes, validating episodes using survey 

data, and characterizing the identified pregnancies. We aimed to establish how the All of 

Us Research Program could be used to answer pregnancy-related research questions 

important to researchers and the communities they serve.   

METHODS 

Data 

The All of Us Research Program began enrolling adult participants across the United 

States in 2018; data collection is ongoing.[13] Focused recruitment occurs at an extensive 

network of sites nationwide; the study is also open to any volunteer. Participants must 

complete a baseline survey with demographic information; additional surveys, which may 

be completed at any time after the baseline survey, collect data on health history, social 

context, and more.[20] Volunteers are invited to link their EHR data (including from before 

joining the study) and contribute biospecimens for genomic analyses; movement, heart 

rate, and sleep data through wearable fitness tracking devices; clinic-based body 

measurements, and more. Due to the geographic diversity of the participants, EHR data is 

contributed by a large number of institutions with different medical record systems. The 

transformation of the data into the Observational Medical Outcomes Partnership common 

data model (OMOP CDM)[21,22] allows the EHR data to be combined across contributing 



sites and analyzed on a web-based platform. After applying quality control and privacy-

preserving measures, data is released to researchers who complete the required training 

and data use agreement. This study used data from the All of Us Research Program’s 

Controlled Tier Dataset Version 7 (release C2022Q4R9), available to authorized users on 

the Researcher Workbench. The project followed the guidelines for ethical conduct of 

research put in place by All of Us and was determined to be exempt by the Northeastern 

University IRB. 

Pregnancy identification algorithm 

We identified pregnancy episodes among All of Us participants who had EHR data at 

some point between ages 15-55 and who did not report male sex at birth. To do so we used 

an algorithm developed and validated in the National Covid Cohort Collaborative data (a 

repository of EHR data contributed from sites around the United States during the COVID-

19 pandemic and harmonized according to the OMOP CDM).[19] This approach, referred to 

as Hierarchy and rule-based pregnancy episode Inference integrated with Pregnancy 

Progression Signatures (HIPPS), consists of three sub-algorithms: Hierarchy-based 

Inference of Pregnancy (HIP), Pregnancy Progression Signature (PPS), and Estimated Start 

Date (ESD). These are described here briefly; a complete description is available in the 

original publication.  

The HIP algorithm, based on an earlier standalone algorithm for OMOP CDM data[23] 

classifies pregnancy episodes based on how a pregnancy ended: live birth, stillbirth, 

ectopic pregnancy, spontaneous or induced abortion, or delivery record only (outcome 



unspecified). First, OMOP concept codes related to these outcomes are identified, 

prioritized in that order, and then deduplicated within patients based on minimum 

plausible pregnancy durations (for example,182 days between live birth outcomes and 56 

days between consecutive ectopic pregnancies) to create outcome-based episodes. Each 

of these episodes is additionally assigned a minimum and maximum plausible start date 

based on plausible gestational ages for the outcome. Next, gestation-based episodes are 

identified based on gestational-age-related codes (e.g., “Gestation period, 36 weeks”) by 

comparing differences in visit dates and between gestational age values between each 

such code. Progressing chronologically across all such codes within an individual, a new 

gestation-based episode is initiated if the time between dates is greater than 28 days more 

than the difference in values implied by the codes. The HIP algorithm then looks for overlap 

between the outcome- and gestation-based episodes.   

The PPS algorithm relies on a different but overlapping set of initial pregnancy-related 

codes. Along with the codes for individual gestational weeks, PPS uses codes that are 

likely to occur only within a specific gestational age range (e.g., glucose tolerance tests 

most often occur within 6 and 8 months of gestation). These codes were identified by Jones 

et al. through a concept frequency analysis as those that are more likely to occur during 

HIP-identified episodes and have little variance in the observed gestational window, and 

were labeled by clinicians with the appropriate gestational time range in months.[19] The 

PPS algorithm identifies episodes with plausible progressions of these timing-specific 

concepts. Next, pregnancy outcome codes that overlap with the expected timing relative 

to the gestational age codes are used to assign outcomes to the episodes. 



The HIP-identified and PPS-identified episodes are merged when they have 

overlapping timing. The ESD algorithm then uses both the week-specific and gestational-

age range codes to identify areas of consistency in the gestational age estimates and 

remove outlying timing codes. These codes are used to assign an inferred pregnancy start 

date and a date the pregnancy outcome occurred based on the latest and most specific 

codes. 

We translated the original code for the algorithm from PySpark SQL to work in R on the 

Researcher Workbench, where we primarily used dbplyr[24] and the allofus R package.[25] 

We conducted analyses in May 2024. Our analysis code is available on Github 

(https://github.com/louisahsmith/allofus-pregnancy). 

Assessment and validation 

As a preliminary assessment of the algorithm, we classified the pregnancy episodes 

based on whether the pregnancy outcomes from both the HIP and PPS algorithms 

matched, the dates of those outcomes were within 14 days of each other, and whether the 

estimated gestational age at the end of pregnancy was plausible. As in Jones et al.,[19] we 

assigned episodes a concordance score of 2 if all three criteria were met, a 1 if the 

outcomes did not match but an outcome was within the expected term duration, and a 0 

otherwise. We also classified episodes based on how precise the gestational age concepts 

were:  “non-specific” if there were no gestational age-related codes or if the timing could 

not be narrowed down below a three-month window (i.e., based on a PPS gestational range 

code), “4 weeks-3 months” or “1-3 weeks” if gestational age could be narrowed to one of 



those windows, and “1 week (poor support)” if there was only a single gestational week 

concept within a pregnancy episode. In addition, we classified pregnancy episodes as 

“data-rich” if they occurred in 2016 or later (due to limitations of earlier EHR data) and 

were identified by both the HIP and PPS algorithms. 

We validated the pregnancy episodes using All of Us survey data. First, we identified 

All of Us participants who met the eligibility criteria (had EHR data at some point between 

ages 15-55 and did not report male sex at birth) and who responded to the Overall Health 

survey. We compared those participants’ responses to the question “Are you currently 

pregnant?” and the identified pregnancy episodes in the EHR data to assess 

misclassification. Figure 1 depicts examples of possible correctly classified (Figure 1A-C) 

and misclassified scenarios (Figure 1 D-G). We considered true positives to occur when 

someone reported being pregnant at a time overlapping with an identified pregnancy 

episode or a two-week buffer interval to account for EHR data delays (Figure 1A-B) and 

false negatives other reports of pregnancy that did not overlap with an identified episode 

(Figure 1D-E). True negative pregnancy episodes were those in which a negative response 

to the survey question did not coincide with any identified episode (Figure 1C). A false 

positive pregnancy episode was one in which a participant reported not being pregnant on 

a date they were identified as greater than 12 weeks pregnant by the algorithm (Figure 1F- 

G). Participants estimated to be at less than 12 weeks gestation were excluded from this 

definition in an attempt to include as many participants who would have known they were 

pregnant as possible (Figure 1H); as a sensitivity analysis, we considered a cutoff of 20 

weeks. We calculated sensitivity (proportion of true positives among the "Yes” survey 



responses), specificity (proportion of true negatives among the “No” responses), positive 

predictive value (proportion of true positives among respondents surveyed at greater than 

12 estimated weeks gestation), and negative predictive value (proportion of true negatives 

among respondents not surveyed during an identified episode). 

In addition, we followed Jones et al. in quantifying occurrences of a set of 25 clinician-

curated pregnancy-related codes not used in identifying the pregnancies. We compared 

their frequency during the expected pregnancy timing among identified episodes to the 

overall population frequency.  

Characteristics of pregnancies and pregnant All of Us participants 

We characterized the pregnancy episodes by their outcomes, gestational lengths, year 

of pregnancy, and demographic characteristics of the pregnant people. We fit exploratory 

log-linear regression models to describe characteristics associated with a higher 

probability of having more than one pregnancy episode captured in the data, having a live 

birth vs. another pregnancy outcome, and delivering preterm (among live births). The 

reference level for predictor variables was the largest group in the sample. We also 

characterized the extent to which pregnant participants contributed additional types of 

data to All of Us, including survey, fitness tracker, and genomic data. 

We used public vital statistics data to compare the demographics of All of Us 

pregnancies ending in live births to national statistics.[26] Specifically, we computed age, 

education, racial/ethnic, and state breakdowns of US live births from 2016-2022 and 

standardized those to the distribution of pregnancies by calendar year in All of Us. 



RESULTS 

Pregnancy episodes 

There were 134,566 individuals in the Controlled Tier C2022Q4R9 release of All of Us 

(participant data cutoff date of July 1, 2022) who did not report male sex at birth and who 

had contributed EHR data at some point between the ages of 15 and 55 (Figure 2). Duration 

of retrospective EHR data varies by participant and contributing data site; we used data 

from as early as 1979. Overall, we identified 59,645 pregnancy episodes among 31,726 

unique All of Us participants. Of these episodes 30,175 were identified by both the HIP and 

PPS algorithms, 31,516 occurred since 2016, and 18,968 were classified as “data-rich 

episodes” (i.e., met both criteria). Concordance differed over time, with chronologically 

earlier pregnancies less likely to be identified by both algorithms or result in matching 

outcomes and dates (Figure 3). Among the data-rich episodes, concordance was higher, 

with 83.5% (n = 15,836) with a concordance score of 2 (fully concordant) and an additional 

9.5% (n = 1,800) with a score of 1 (plausible gestational age but mismatched outcomes, 

e.g., live birth vs. delivery record only). To focus on the most reliable episodes, we present 

our main results for the data-rich episodes only, except when otherwise specified.  

Validation 

There were 63,419 All of Us participants who answered “yes” (n = 4,680) or “no” (n = 

58,739) to the pregnancy question (“Are you currently pregnant?”) on the “Overall Health” 

survey whose potential pregnancies we could capture in EHR data. Of those reporting 

current pregnancy, 3,832 (sensitivity = 81.8%) had an identified pregnancy episode that 



overlapped the survey date within a buffer of two weeks. Compared to the 848 survey 

respondents reporting a pregnancy we did not identify as overlapping, those with 

pregnancies we did identify as overlapping had more EHR data both overall (mean 90.1 

codes vs. 35.9 codes, p <0.001) and specific to pregnancy (mean 12.0 codes vs. 2.3 codes 

of those used in HIP algorithm, p <0.001). In addition, more of their EHR codes occurred 

post-survey (mean time post-survey 62 days vs. -7 days, p <0.001) (Supplementary Table 

1).  

Specificity was over 99%, with 518 respondents reporting no pregnancy despite our 

algorithm identifying them as more than 12 weeks pregnant. Of these, the median time 

from the survey date to the identified pregnancy end date was 14 days (interquartile range 

0, 20 days). One possible explanation consistent with these data is that these participants 

took the survey soon after pregnancy, but the dates related to the pregnancy outcome 

codes in their EHR data were delayed (e.g., as in Figure 1F). In other settings it appeared 

that pregnancy-related codes were carried forward for years after their first occurrence, 

leading to multiple false positive episodes. The positive predictive value was 83.1%, and 

the negative predictive value was 98.5%. Changing the estimated gestational age threshold 

at which we started including survey responses to 20 weeks reduced the positive 

predictive value to 71.9%, as many more true positives than false positives were excluded. 

Overlap of the 25 clinician-curated concepts not used in the HIPPS algorithm to 

identify pregnancies was comparable to the overlap reported by Jones et al.[19], though 

was lower, as expected, when we only considered the data-rich episodes (Supplementary 

Tables 2-3). For example, 97.7% of occurrences of “Breech presentation” overlapped any 



pregnancy episode with the appropriate timing, while there was 82.4% overlap with data-

rich episodes; Jones et al. reported 95.2% overlap. 

All of Us pregnancy and participant characteristics 

The majority of the data-rich pregnancy episodes ended in live birth (n = 11,385; 

60.0%); 26.6% (n = 5,043) were ongoing or missing an outcome (Figure 4; Supplementary 

Table 4). Gestational age was able to be dated to within a week by multiple codes for 

55.5% (n = 10,519) of pregnancy episodes; just 3.8% (n = 729) had non-specific gestational 

duration information (Supplementary Table 5).   

Of the 14,237 All of Us participants with at least one data-rich pregnancy episode, 

most were Hispanic or Latino (43.2%) or non-Hispanic White (33.6%) (Table 1). Pregnant 

people represented 41 US states and territories, but over half had fewer than 10 

participants; over two-thirds were from just four states: Arizona (24.1%), New York (22.3%), 

California (11.6%), and Massachusetts (9.1%). The vast majority identified as women 

(99.4%) and heterosexual (92.0%) (Table 1).  

In the regression analysis, we found that people with incomes greater than $100,000 

per year were most likely to have more than one pregnancy episode captured (probability 

ratio 0.79 vs $50-100,000; 95% CI 0.70, 0.89), as were those who were married/partnered 

compared to divorced/separated/widowed (0.84; 95% CI 0.70, 1.00) or to never married 

(0.75; 95% CI 0.67, 0.84) (Supplementary Table 6).  After 30-34 years old, there was a 

decline with age in the probability that a pregnancy episode ended in a live birth, with 

probability ratios of 0.94 (95 % CI 0.87, 1.00) at 35-39 years and 0.84 (95 % CI 0.74, 0.94) at 



40-44 years (Supplementary Table 7). Black participants were more likely to have preterm 

deliveries compared to participants who were Hispanic or Latino (probability ratio 1.24 ; 

95% CI 1.06, 1.43), as were older compared to younger participants (Supplementary Table 

8).  

Almost all participants with data-rich pregnancy episodes completed the Lifestyle and 

Overall Health surveys along with the required Basics survey (Table 2). In addition, 36.1% 

completed the Personal and Family Medical survey, 35.3% the Healthcare Access survey, 

and 14.6% the Social Determinants of Health survey. Few have contributed fitness tracker 

data during their pregnancy (n = 211 with activity data; n = 176 with heart rate data; n = 195 

with sleep data), but 88.9% have some genomic data available. Almost half of pregnancy 

episodes (49.4%) occurred before joining All of Us, but a substantial number joined during 

pregnancy (23.5%) or had prospective pregnancy episodes (26.8%). 

Table 1. Demographic characteristics of All of Us participants with data-rich pregnancy episodes and of live births, 
compared to the United States population distribution of live births (vital statistics data). Live births may represent more 
than one pregnancy from the same participant. Vital statistics data has been standardized to the distribution of delivery 
years in the All of Us data. 

 
Individuals Live births United States 

population 

n = 14,237 n = 11,385  

Gender identity    

    Woman 14,018 (99.4%) 11,239 (99.5%)  

    Other/multiple 52 (0.4%) -- a  

    Man 28 (0.2%) -- a   

    Unknown 139 93  

Sexual orientation    

    Straight 12,795 (92.0%) 10,455 (93.6%)  



 
Individuals Live births United States 

population 

n = 14,237 n = 11,385  

    Bisexual 833 (6.0%) 544 (4.9%)  

    None 195 (1.4%) 119 (1.1%)  

    Gay/lesbian 89 (0.6%) 49 (0.4%)  

    Unknown 325 218  

Race/ethnicity b    

    Hispanic or Latino 6,044 (43.2%) 5,407 (48.2%) (23.7%) 

    White 4,702 (33.6%) 3,422 (30.5%) (52.7%) 

    Black or African-American 2,244 (16.0%) 1,582 (14.1%) (14.7%) 

    Asian 465 (3.3%) 370 (3.3%) (6.4%) 

    More than one race 304 (2.2%) 247 (2.2%) (2.2%) 

    Other 118 (0.8%) 83 (0.7%) -- 

    Middle Eastern or North African 95 (0.7%) 79 (0.7%) --  

    Native Hawaiian or Other Pacific 
Islander 25 (0.2%) 24 (0.2%) (0.2%) 

    Unknown 240 171 (2.21%) 

Family income ($)    

    < 10k 2,054 (20.7%) 1,435 (19.1%)  

    10-25k 1,460 (14.7%) 1,106 (14.7%)  

    25-50k 2,105 (21.2%) 1,727 (23.0%)  

    50-100k 1,905 (19.2%) 1,488 (19.8%)  

    > 100k 2,404 (24.2%) 1,743 (23.2%)  

    Unknown 4,309 3,886  

Education    

    Less than high school 1,566 (11.2%) 1,258 (11.2%) (11.8%) 



 
Individuals Live births United States 

population 

n = 14,237 n = 11,385  

    High school graduate 7,515 (53.9%) 6,243 (55.8%) (53.3%) 

    College graduate 2,651 (19.0%) 2,040 (18.2%) (21.0%) 

    Advanced degree 2,213 (15.9%) 1,644 (14.7%) (12.6%) 

    Unknown 292 200  

Maternal age c 
  

 

    15-19 years -- 386 (3.4%) (4.42%) 

    20-24 years -- 2,199 (19.3%) (18.6%) 

    25-29 years -- 3,196 (28.1%) (28.7%) 

    30-34 years -- 3,201 (28.1%) (29.5%) 

    35-39 years -- 1,905 (16.7%) (15.4%) 

    40-44 years -- 462 (4.1%) (3.15%) 

    45 years and over -- 36 (0.3%) (0.16%) 

a Values omitted due to small cell counts, following All of Us data policy 
b Race/ethnicity categories are non-exclusive; all categories apart from Hispanic or Latino are non-Hispanic 
c Maternal age not presented for individuals, as age varied across pregnancies 

 

Table 2. Additional All of Us data contributed by participants with identified data-rich pregnancy episodes. 

Timing of pregnancy episode relative to All of Us participation  
(n = 18,968 episodes) 

   Before 9368 (49.4%) 

   During 4456 (23.5%) 

   After 5076 (26.8%) 

   Unclear 68 (0.4%) 



     

Fitness tracking device data during pregnancy episode  
(n = 18,968 episodes) 

   Activity 211 (1.1%) 

   Sleep 195 (1.0%) 

   Heart Rate 176 (0.9%) 

Genomic data  
(n = 14,237 individuals) 

Array data 12,653 (88.9%) 

Whole genome variant data 10,260 (72.1%) 

Long read whole genome variant 48 (0.3%) 

Structural variant 506 (3.6%) 

Survey data  
(n = 14,237 individuals) 

The Basics 14,237 (100%) 

Lifestyle 14,233 (100%) 

Overall Health 14,233 (100%) 

Personal/Family Health History 5,140 (36.1%) 

Healthcare Access and Utilization 5,022 (35.3%) 

Social Determinants of Health 2,072 (14.6%) 

 

Live births 

Among live births, the median gestational age was 38.6 (interquartile range 37.1, 39.4), 

and 20.5% were inferred to have delivered before 37 weeks gestation (i.e., preterm). 

Compared to vital statistics data from the same years (Table 1), live births in All of Us were 

to slightly older (21.1% vs. 18.7% 35 years or greater) and more educated (14.7% vs. 12.6% 



with a graduate degree) individuals. Similar proportions of births were to Black, Native 

Hawaiian/Pacific Islander, or individuals with more than one race. However, compared to 

national data, All of Us had a smaller proportion of Asian (3.3% vs. 6.4%) and non-Hispanic 

White (30.5% vs 52.7%), and more Hispanic or Latino (48.2% vs. 23.7%) people who had 

given birth. Vital statistics do not capture Middle Eastern/North African ethnicity, but 95 All 

of Us participants reporting that ethnicity had data-rich pregnancy episodes (Table 1). 

DISCUSSION 

In this study, we used All of Us EHR data to identify pregnancy episodes and estimate 

gestational age. In doing so, we validated an algorithm recently developed for use in OMOP 

CDM data and demonstrated the capability of the All of Us data to support pregnancy 

research with a diverse sample of pregnant people.  

Promise and potential of All of Us multi-source data 

The rich combination of data sources enables a more nuanced understanding of 

factors affecting maternal health. By integrating EHR data with survey responses, genetic 

information, and physical activity data, the All of Us Research Program allows for a deeper 

examination of how social factors, health history, healthcare access, genetic 

predispositions, and more impact pregnancy and postpartum health.  

In particular, the over 4000 people who completed All of Us surveys during a 

pregnancy for which there was high-quality electronic health record data make for a 

significant subset that may also have EHR or other data through the postpartum period, 



allowing researchers to ask questions about relationships between social factors such as 

social support or experiences of discrimination in pregnancy and postpartum health and 

well-being. This research is crucial given the known racial disparities in maternal health in 

the US, including higher rates of maternal morbidity and mortality among Black and 

Indigenous people. By analyzing the diverse sample All of Us has recruited, researchers 

can help identify how systemic issues and social determinants of health contribute to 

these disparities and develop specific interventions to address their causes. 

Other sources of data, including genomic and activity device data, provide additional 

opportunities to answer critical pregnancy-related questions. For example, preterm 

delivery has numerous causes but this heterogeneity makes it difficult to predict;[27,28] 

linking the inferred gestational ages of the All of Us pregnancies with these sources of big 

data might produce new insights. Future data types on the All of Us data roadmap[29] 

include self-reported height and weight, activity tracker data from Apple’s popular 

platform, and data from a nutrition substudy, all of which could provide more data to study 

predictors and outcomes associated with weight and nutrition during preconception, 

pregnancy, and postpartum.  

Activity tracker data shows promise not only for research on physiologic changes 

during pregnancy but also for inclusion in an improved pregnancy identification algorithm. 

Epstein and McCoy used EHR and fitness tracker data in 89 All of Us participants to 

observe the change in heart rate for pregnant people and found a peak in heart rate during 

the first and third trimesters and a steady increase through the second trimester.[30] Given 



potential variations in daily exercise, heart rate, and sleep duration, integrating data from 

wearable devices could augment the algorithm's effectiveness. 

Strengths and limitations of EHR pregnancy data 

Real-world data like the EHR data used in this study offers valuable insights into 

pregnancies and health-related characteristics of pregnant people. Unlike pregnancy-

specific studies, it can span years of patient health records, enabling a comprehensive 

understanding of medical history, including pre-pregnancy and post-pregnancy phases, 

and providing a holistic view of participant health. Furthermore, compared to clinical trial 

data, which generally has stringent inclusion/exclusion criteria, EHR data like that in All of 

Us better represents real-world populations, including underrepresented groups, fostering 

a more inclusive, reliable, and comprehensive approach to research.[31] In addition, the 

validity of gestational age diagnosis codes in characterizing pregnancies is critical to 

pregnancy and perinatal research, as gestational age is one of the most important factors 

in clinical decision-making and in neonatal prognosis.[32]  

 However, EHR data comes with its own limitations. Firstly, coding errors lead to 

incomplete or inaccurate documentation of patient records. Certain medical conditions 

may not be fully captured or explained by these codes, leaving important information 

conveyed through free text, which is not included in All of Us data. Secondly, patients often 

receive care from multiple healthcare systems, resulting in fragmented records that result 

in missing information. For instance, a patient receiving prenatal care at one hospital may 

need emergency labor services at a different hospital within another health system. 



Although the All of Us Research Program harmonizes data from multiple systems, not all 

sites where patients receive care contribute data. Indeed, over one-quarter of the 

otherwise data-rich pregnancy episodes we identified were missing an outcome, though in 

some cases this was likely due to pregnancies that continued past the data cut-off point. 

In our survey-based validation substudy that included people who joined All of Us 

while pregnant, we estimated sensitivity exceeding 80% and specificity approaching 100%, 

affirming the Jones et al approach for reliably identifying pregnancy episodes. Other 

studies have also reported high agreement rates and positive predictive values in line with 

our study, from 70% to close to 100%.[19,33–37] However, we could not specifically 

validate gestational age at the outcome, which may be less accurately identified than the 

outcome itself, particularly for non-live birth outcomes.[23] In addition, our approach to 

validation primarily relied on EHR information occurring around the time participants 

joined All of Us and took the surveys, when their healthcare is more likely to be occurring 

within systems that contribute data to All of Us, leading to an overestimate of the likely 

sensitivity of the algorithm over the entire scope of the data. 

As with other pregnancy algorithms, HIPPS leverages medical codes that represent 

key factors such as prenatal care procedures, gestational age, and a range of pregnancy 

outcomes. The algorithm was developed for data that has been translated to the OMOP 

CDM, which is made up of a common vocabulary of concept codes representing other 

code sets, including ICD-9, ICD-10, and CPT codes. This makes the algorithm highly 

transferable to different settings and across time. Indeed, we identified pregnancies as 

early as the 1980s despite changes in medical coding since then. However, the early 



episodes were of notably lower quality based on concordance between algorithms and 

estimated gestational age, reflecting improvements in electronic health record keeping 

and the usage of gestational age-specific ICD-10 codes.[38,39]  

Recommendations and future directions  

Properly accounting for timing is critical in pregnancy-related research and will be 

even more so in All of Us studies, as different data components are contributed at different 

times relative to a given pregnancy. Half of the pregnancies we identified occurred before a 

participant joined All of Us, limiting the sample size for research questions in which 

exposures of interest and covariates may change over time and are drawn from survey 

questions. Researchers should be careful not to make analyses conditional on joining All 

of Us post-pregnancy; for example, pre-All of Us pregnancies are guaranteed not to have 

resulted in maternal mortality. Nonetheless, some of the survey responses (e.g., 

race/ethnicity) can be combined with EHR regardless of timing, as can genetic data. As All 

of Us grows, we can expect more prospective pregnancies to occur.  

While All of Us aims to be inclusive, it is not necessarily representative. We found that 

in several respects, demographic data on pregnancies in All of Us did not match that from 

vital statistics. While not inherently a problem, researchers should consider selection as a 

source of bias in their studies, thinking carefully about who is joining All of Us and 

contributing each type of data. While targeted recruitment is necessary to meet the 

Program’s commitment to outreach to underrepresented communities, a resulting lack of 

geographic diversity suggests a possible lack of diversity in other, unmeasured respects. In 



future work, we will consider how to address possible biases due to selection and missing 

data and improve the generalizability of the data. 

 Although the algorithm we used was not perfectly accurate even according to our 

limited validation exercises, the use of an algorithm like this one represents an 

improvement compared to a simple code search for pregnancy or delivery-related codes. 

While live birth is a relatively straightforward outcome to recognize, other outcomes, such 

as ectopic pregnancy, require more supporting information before a single code should be 

considered indicative of an event.[40] In informal reviews of some participants’ medical 

histories, we found the same code referring to ectopic pregnancy or miscarriage repeated 

for years with no other indication of pregnancy, suggesting that in some cases these codes 

are carried forward in the problem list without representing new events. Future research on 

pregnancies that do not end in live birth will involve more thorough review to assess the 

accuracy of the algorithm for these outcomes. Furthermore, we followed Jones et al.[19] in 

combining spontaneous and induced abortion in the presentation, as distinguishing the 

two brings additional challenges. Given the changing landscape of abortion access in the 

United States, addressing these challenges represents an important future research 

contribution. 

CONCLUSION 

The Jones et al. pregnancy algorithm can be used by the community of researchers 

working on All of Us to identify pregnancy episodes and ask novel questions about 

experiences longitudinally with fertility, pregnancy, birth, and the postpartum and long-



term health of a diverse sample of pregnant people. However, limitations of electronic 

health record data, All of Us survey and measurement timing, and selection into the study 

should be thoughtfully considered in such research. 
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FIGURE CAPTIONS 

Figure 1. Schematic describing the validation study using survey data and scenarios 

resulting in errors. The participants represented in A and B reported being pregnant during, 

or within two weeks of, an assigned pregnancy episode, representing true positives. 

Participant C reported not being pregnant during a time not overlapping any identified 

pregnancy episode, representing a true negative. Participants D and E reported being 

pregnant at points in time not overlapping with any identified pregnancy episode (false 

negatives), either because there was no EHR data at that time (D) or because no outcome 

data resulted in a misaligned episode. False positives are represented by F and G, either 

due to no corresponding true pregnancy in E (e.g., if historical codes are carried forward in 

the EHR) or due to misalignment in G (e.g., because of delayed dates in the EHR data). 

Participant H answered the survey before 12 weeks of an assigned pregnancy episode, 

meaning we did not know whether they would have known they were pregnant at the time 

(these situations were excluded from the false-negative calculations no matter the 

response). 

 

Figure 2. All of Us participant flow diagram: eligibility, validation substudy, and pregnancy 

episode identification. Boxes refer to numbers of individuals, and dashed boxes refer to 

numbers of pregnancy episodes. 

 

 
Figure 3. Concordance between pregnancy identification algorithms by date across all 

pregnancies. Fully concordant pregnancies (score = 2) have matching HIP and PPS 



outcomes, similar end dates (within 14 days), and a plausible gestational age. Somewhat 

(score = 1) and not concordant (score = 0) episodes differed on outcome category or 

timing. Additional episodes were identified by only one of the two algorithms. We included 

episodes starting after 2016 (dashed line) that were identified by both algorithms in our 

main analysis. 

 

Figure 4. Distribution of pregnancy outcomes among all identified pregnancies (left panel) 

and the data-rich episodes (right panel). Episodes are stratified by the precision of the 

gestational age information used to assign pregnancy timing. Week-level pregnancy 

episodes were able to be dated to within less than a month; those with poor support only 

had a single week-specific code. Month-level episodes were dated to within 1-3 months, 

and non-specific episodes were less precise. In addition, shaded portions of the bars 

represent the highly concordant episodes, on which both HIP and PPS algorithms agreed 

on outcome and timing, and light-colored portions represent partial or non-concordance. 
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